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Abstract. In the United States and several other countries, the development of popu-
lation viability analyses (PVA) is a legal requirement of any species survival plan developed
for threatened and endangered species. Despite the importance of pathogens in natural
populations, little attention has been given to host–pathogen dynamics in PVA. To study
the effect of infectious pathogens on extinction risk estimates generated from PVA, we
review and synthesize the relevance of host–pathogen dynamics in analyses of extinction
risk. We then develop a stochastic, density-dependent host–parasite model to investigate
the effects of disease on the persistence of endangered populations. We show that this model
converges on a Ricker model of density dependence under a suite of limiting assumptions,
including a high probability that epidemics will arrive and occur. Using this modeling
framework, we then quantify: (1) dynamic differences between time series generated by
disease and Ricker processes with the same parameters; (2) observed probabilities of quasi-
extinction for populations exposed to disease or self-limitation; and (3) bias in probabilities
of quasi-extinction estimated by density-independent PVAs when populations experience
either form of density dependence. Our results suggest two generalities about the relation-
ships among disease, PVA, and the management of endangered species. First, disease more
strongly increases variability in host abundance and, thus, the probability of quasi-extinc-
tion, than does self-limitation. This result stems from the fact that the effects and the
probability of occurrence of disease are both density dependent. Second, estimates of quasi-
extinction are more often overly optimistic for populations experiencing disease than for
those subject to self-limitation. Thus, although the results of density-independent PVAs
may be relatively robust to some particular assumptions about density dependence, they
are less robust when endangered populations are known to be susceptible to disease. If
potential management actions involve manipulating pathogens, then it may be useful to
model disease explicitly.

Key words: density dependence; diffusion approximation; disease; epidemic; epidemiology; ex-
tinction risk; host–pathogen interactions; parasite; pathogen; population viability analysis; PVA;
reservoir host.

INTRODUCTION

Disease and host–pathogen interactions play a cen-
tral role in determining the dynamics and persistence
of populations (Dobson and Foufopoulos 2001). How-
ever, disease has traditionally received much less at-
tention than other community interactions (e.g., pre-
dation and competition) in the ecological literature
(Gulland 1995). There are several well-known case
studies bearing on the effects of disease on the fate of
endangered populations, and there is increasing atten-
tion on how the ecological theory of diseases (e.g.,
Anderson and May 1991) may bear on conservation
issues (Lafferty and Gerber 2002).
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Population viability analysis (PVA) is one of the
quintessential tools in conservation biology for quan-
tifying extinction risk. Very generally, there are two
forms of single-population PVA (Morris and Doak
2002): (1) time series models and (2) matrix population
models. Here we focus on the efficacy of time series
PVAs faced with forecasting the future persistence of
populations exposed to disease. The simplest and most
commonly used time series PVAs (e.g., Lande and Or-
zack 1988, Dennis et al. 1991, Holmes 2001, Morris
and Doak 2002) assume, among other things, that pop-
ulation growth is density independent and that species
interactions such as disease can be ignored or treated
as density-independent mortality.

The impact of a pathogen often depends on host
density (Anderson and May 1979, May and Anderson
1979). Thus, in traditional host–pathogen models, both
the probability of occurrence and severity of an epi-
demic (in terms of mortality) are strongly tied to host



August 2005 1403DISEASE AND POPULATION VIABILITY ANALYSIS

density. This suggests two important points about the
blind application of density-independent PVAs to pop-
ulations exposed to disease. First, density dependence
brought on by disease may reduce the precision of den-
sity-independent PVA models at forecasting risk (e.g.,
Sabo et al. 2004). More specifically, time series PVAs
that assume density-independent (‘‘linear’’ on a log
scale) population growth are often robust to density
dependence when density effects are not strong and
when populations are near their maximum abundance
level, but generate biased estimates of risk for popu-
lations that grow quickly (Sabo et al. 2004). Thus, if
disease dynamics mirror those of density dependence,
then we should expect density-independent PVAs,
when applied to populations subject to disease, to per-
form well in the same sorts of situations (for declining,
slowly recovering, or strongly fluctuating populations).

Second, because the probability of an epidemic oc-
curring is also related to the host density, the ‘‘process’’
of disease adds a second source of stochasticity to host
population dynamics. This additional stochasticity
could further bias estimates of growth parameters and
risk made by density-independent PVA models. This
key distinction between a disease and more traditional
density-dependent processes (e.g., Volterra 1928, Rick-
er 1954) suggests that the performance of density-in-
dependent PVAs may be qualitatively different for pop-
ulations experiencing epidemics and self-limitation.
One of the main reasons for using PVA models is not
to estimate the probability of persistence of a given
population as it currently exists, but as a decision anal-
ysis tool to compare the consequences for population
persistence of alternative management actions (Morris
et al. 1999, Possingham et al. 2001). This approach
requires modeling the processes that determine popu-
lation size and the effects of management actions upon
them, and not simply projecting a stochastic time series
into the future. Consequently, treating an epidemic in-
fectious disease as simply variation in catastrophic sto-
chasticity may not be an adequate approach. If potential
management actions involve manipulating pathogens,
then it may be necessary to model disease explicitly.

One key challenge in improving the application of
PVA in conservation settings is developing a clear link
between plausible biological factors driving population
dynamics, such as pathogens, and species population
biology. Although several theoretical approaches to im-
prove the accuracy of PVA predictions have recently
been put forth in the literature (e.g., Dennis et al. 2001,
Holmes 2001, DeValpine and Hastings 2002), few pub-
lished PVAs explicitly include disease (Haydon et al.
[2002] is an exception). This problem is, at least in
part, attributable to deficiencies in the theoretical
framework for examining disease in analyses of ex-
tinction risk (Lafferty and Gerber 2003) and a lack of
data to parameterize density-dependent models (Sabo
et al. 2004). PVA models that explicitly include disease
dynamics may allow scientists to test the sensitivity of

a species’ persistence to changes in life history param-
eters influenced by disease outbreaks. This may help
to identify causes of population declines for fluctuating
populations.

In this paper, we ask two questions about disease,
density dependence, and the performance of time series
PVA models that assume density-independent popu-
lation growth. (1) Do endangered populations exposed
to disease exhibit population dynamics identical to
those of more traditional forms of self-limitation (e.g.,
Ricker 1954)? (2) Do disease and density dependence
alter probabilities of extinction for endangered popu-
lations in a qualitatively similar fashion? In summary,
we evaluate the need for explicit incorporation of dis-
ease in population viability analyses.

RELEVANT PRINCIPLES OF EPIDEMIOLOGY

The density of a population is an important parameter
for both PVA and host–pathogen theory. A fundamen-
tal principle of epidemiology is that the spread of an
infectious disease through a population is a function
of the density of both susceptible and infectious hosts.
If infectious agents are supportable by the host species
of conservation interest, the impact of a pathogen on
a declining population is likely to decrease as the host
population declines. A pathogen will spread when, on
average, it is able to transmit to a susceptible host
before an infected host dies or eliminates the infection
(Kermack and McKendrick 1927, Anderson and May
1991). If the parasite affects the reproduction or mor-
tality of its host, or the host is able to mount an immune
response, the parasite population may eventually re-
duce the density of susceptible hosts to a level at which
the rate of parasite increase is no longer positive. Most
epidemiological models indicate that there is a host
threshold density (or local population size) below
which a parasite cannot invade, suggesting that rare or
depleted species should be less subject to host-specific
disease. This has implications for small, yet increasing,
populations. For example, although endangered species
at low density may be less susceptible to a disease
outbreak, recovery to higher densities places them at
increasing risk of future disease-related decline (e.g.,
southern sea otters; Gerber et al. 2004).

In the absence of stochastic factors (such as those
modeled in PVA), and given the usual assumption of
disease models that the chance that a susceptible host
will become infected is proportional to the density of
infected hosts (the mass action assumption) a host-
specific pathogen cannot drive its host to extinction
(McCallum and Dobson 1995). Extinction in the ab-
sence of stochasticity is possible if alternate hosts
(sometimes called reservoir hosts) relax the extent to
which transmission depends on the density of the en-
dangered host species. Similarly, if transmission occurs
at a rate proportional to the frequency of infected hosts
relative to uninfected hosts (see McCallum et al. 2001),
endangered hosts at low density may still face the threat



1404 LEAH R. GERBER ET AL. Ecological Applications
Vol. 15, No. 4

of extinction by disease. These possibilities suggest
that the complexities characteristic of many real host–
pathogen systems may have very direct implications
for the recovery of rare endangered species.

Diseases affecting wildlife can be broadly divided
into endemic infections, which are present continuously
in a particular population, at a more or less constant
level, and epidemic infections, which occur sporadi-
cally, pass through the population, and then disappear.
Endemic infections might potentially be handled within
the framework of a density-independent PVA model.
If the disease is present continuously, then mortality
and fecundity rates measured in the field will include
components due to the influence of the parasite. To
estimate the impact that removal of an endemic parasite
has on population viability, it would be possible, in
principle, to manipulate parasite levels in some hosts,
to estimate the resulting vital rates in both infected and
parasite-free hosts (e.g., Gulland 1992, Hudson et al.
1992), and then use a conventional PVA model to com-
pare the viability of populations with and without par-
asite infection. Such an approach does not, however,
model the density-dependent nature of parasite popu-
lation dynamics.

Epidemic infections are likely to require more fun-
damental changes to the PVA process. Their inclusion
requires consideration of four questions in developing
PVAs:

1) What is the likelihood of pathogen arrival into
the population under consideration?

2) Given that infection has arrived, what is the like-
lihood that an epidemic will become established in the
population?

3) Once it has become established, what will be the
impact of the pathogen on the host population?

4) How long will the pathogen persist in the pop-
ulation, once it has become established?

The answers to each of these questions will depend
on the biology of the pathogen and host. For example,
it is important to consider the host range (is it restricted
to the species for which the PVA is being developed?),
the mode of pathogen transmission (is there a vector,
intermediate host, or long-lived infective stage?) and
the effect of the pathogen on the host.

One approach to capturing the dynamics of an epi-
demic in a PVA framework is to incorporate this type
of disease as catastrophic mortality (e.g., Gerber and
Hilborn 2001). To do this, one assumes that it is pos-
sible to estimate the probability that the pathogen will
arrive in the population and become established, and
that it is possible to estimate the proportion of indi-
viduals that will die, or fail to reproduce, as a conse-
quence. This approach further assumes that neither of
these probabilities depends strongly on host population
size or density, and that the infection persists for one
time step only. Empirical studies of epidemics (Gulland
1992, Heide-Jorgensen and Harkonen 1992, Dobson
and Meagher 1996) show that these model assumptions

are clearly inadequate for understanding the true effects
of this type of disease on the viability of a recovering
species. Thus, a more sophisticated PVA that explicitly
incorporates density dependence in transmission may
be warranted.

In addition to density, environmental factors (such
as pollution that increases host susceptibility) or ge-
netic population structure (which may make certain
host–parasite genotypes more compatible from the par-
asite’s perspective), may influence the efficiency of
transmission to new hosts. The vital demographic rates
of both the pathogen and the host are also of importance
in determining a parasite’s success. Factors (such as
medication and immune response) that alter the birth
and death rates of parasitic and free-living stages of
the parasite might substantially affect disease spread
and persistence. Many parasites require passage
through several host species to complete life cycles.
These complex life cycles may increase the conditions
that must be met for the disease to spread. Although
the death of a host often results in the death of its
parasites, resulting in selection for reduced virulence
(although not necessarily avirulence; May and Ander-
son 1990), this will not be the case where death of the
intermediate host through predation is a necessary part
of the parasite’s life cycle.

Finally, the basic reproductive rate (R0) of pathogens
is the key epidemiological quantity necessary to pa-
rameterize a PVA, in addition to the usual host de-
mographic parameters. R0 is the basic reproductive
number, or the number of secondary infections per pri-
mary infection in a completely susceptible host pop-
ulation. However, the way in which this value scales
with host density will have a major influence on disease
dynamics, particularly if R0 estimated from one pop-
ulation is applied to another. In some cases, there may
be sufficient information to empirically estimate the
relationship between R0 and host density. Failing this,
the conventional assumption of most host–pathogen
models is that R0 is directly proportional to host density
(density dependence), but vector- or sexually trans-
mitted pathogens often follow frequency-dependent
transmission, in which R0 is independent of density
(McCallum et al. 2001).

PVA: A ROLE FOR INFECTIOUS PATHOGENS?

There are two quite different approaches that can be
used to predict the range of possible trajectories of a
population affected by stochastic factors. First, Dennis
et al. (1991) proposed a method that uses time series
abundance data to estimate the rate of increase of the
population, together with its variance. These two pa-
rameters can then be used to generate a frequency dis-
tribution of potential population size at any given time.
This approach involves the estimation of two param-
eters, the population growth rate (m) and the variability
in that rate (s2), although a later variation provides a
method for estimating density-dependent growth pa-
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rameters as well (Dennis and Taper 1994, Foley 1994).
These time series methods provide estimates of param-
eters by analyzing the pattern of abundance over time,
but make no attempt to model the processes generating
the observed pattern directly. Alternatively, the major
packaged PVA computer models are process based.
They attempt to generate the trajectory of the popu-
lation via an age- or stage-structured stochastic model.
This means that they require the estimation of a large
number of demographic parameters, minimally survi-
vorship and fecundity, together with their variances,
for each of the age or sex classes that are modeled.
Because processes are modeled, it would be possible,
in principle, to include parasite or pathogen effects in
these models explicitly, and to evaluate the effective-
ness of various control actions.

In the next section, we develop a simple model that
includes key features of the effects of epidemic path-
ogens on stochastic host populations. Our model is de-
signed to examine two questions. First, how well does
modeling epidemics as density-independent catastro-
phes capture the effect of epidemics on population vi-
ability? Second, how do pathogen epidemics differ from
other forms of density dependence in their impact on
host population viability?

Our model assumes that the density of the host spe-
cies being modeled drives the dynamics of the epidem-
ic. It is therefore not directly applicable to situations
in which the dynamics of the pathogen are driven by
its interaction with a much more common reservoir
species, and infection of the endangered host occurs
primarily by cross-infection from the reservoir. Al-
though it is certainly the case that many pathogen
threats to endangered species involve a reservoir host
(McCallum and Dobson 1995, Gog et al. 2002, Lafferty
and Gerber 2002), there are numerous examples of
pathogens causing endangerment in which the disease
propagates primarily within the species of conservation
interest. For example, Haydon et al. (2002) estimated
that transmission of both rabies and canine distemper
virus occurred at much higher rates within and between
Ethiopian wolf packs than it did between reservoir dog
populations and wolves. In African lions in the Ser-
engeti, epidemics of several viruses (including canine
distemper virus) are associated with minimum thresh-
old densities of susceptible hosts (Packer et al. 1999),
indicating that host density drives the dynamics of
these pathogens. Stress due to droughts or the presence
of other pathogens that weaken host immunity may
lower establishment thresholds (Lafferty and Holt
2003). Koalas (Phascolarctos cinereus) suffer high
rates of mortality from lymphomas and leukemia (up
to 80% of all mortalities of captive koalas in some
colonies), and a host-specific retrovirus may be re-
sponsible (Hanger et al. 2000).

MODELING EFFECTS OF EPIDEMIC PATHOGENS ON

STOCHASTIC HOST POPULATIONS

Our general approach was to use commonly used
methods of PVA (e.g., Dennis et al. 1991, Morris et

al. 1999, Holmes 2001) to examine: (1) quantitative
differences in the dynamics of populations exposed to
disease and a more traditional form of single-species
density dependence expressed in the Ricker model; (2)
how disease and density dependence influence proba-
bilities of an 80% decline, a common risk metric used
in management decisions (e.g., IUCN Red List; Mace
and Lande 1991); and (3) how density-independent
PVAs perform when the underlying population pro-
cesses include disease or density dependence. Our
overarching hypothesis is that although the density-
dependent effects of disease (e.g., on host mortality)
are similar to other forms of density dependence when
an epidemic occurs, the variable effects of disease with
host density and the probabilistic nature of epidemics
occurring may lead to distinctly different population
dynamics than simple density dependence. As a result,
we predict that density-dependent PVAs will be less
robust to data influenced by disease than by simple
density dependence.

To do this we first simulated time series for replicate
populations with disease or with simple density de-
pendence for a variety of parameters describing the
growth rate of the population (m) and the intensity of
density dependence. Previous cross-validation studies
have used these parameters to identify case studies in
which the performance of density-independent PVA
models is robust despite density dependence (Sabo et
al. 2004). Our objective was to compare the effects of
disease and density dependence on population viability.
Here we used the probability of an 80% decline in
abundance, P80, as an extinction risk metric because it
is easy to compute (numerically) and is applied by
conservation organizations worldwide as one of several
listing criteria.

To assess the impact of disease on predictions made
by density-independent PVA protocols (e.g., Dennis et
al. 1991), we used a diffusion approximation (DA)
model to estimate growth parameters for populations
affected by either infectious disease or density depen-
dence in the time series just generated (Dennis et al.
1991). These growth parameters were then used to nu-
merically estimate P80 values for comparison with ob-
served values for this risk metric from the simulated
disease- and density-dependent processes. We used the
DA model because it has been widely used to estimate
extinction risks for species of conservation interest
(e.g., Dennis et al. 1991, Nicholls et al. 1996, Gerber
et al. 1999, Morris et al. 1999, Holmes 2001).

The basic PVA model was the stochastic difference
equation, as described by Dennis (1991):

N 5 N exp(m ).t11 t t (1)

Here Nt and Nt11 are the population size in generations
t and t 1 1, respectively, and mt is a stochastic param-
eter drawn from a normal distribution with a mean and
variance determined by the parameters m0 and s2, re-
spectively. In the absence of pathogen infection, mt was
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FIG. 1. The deterministic skeletons for population dy-
namics generated by disease (Eq. 3) and self-limitation as
described by the Ricker model (Eq. 5) for b/a 5 0.01, m0 5
0.1. Axes are population size at time t (Nt, abscissa) and at
time t 1 1 (Nt11, ordinate). Dynamics of these two models
converge when R0 . 1 (with these parameters, when Nt .
100), given that an epidemic occurs. Note that the dynamics
are quite different when R0 , 1, because the disease model
has no density dependence when R0 , 1, whereas it is always
present in the Ricker model.

drawn at random from a normal distribution with mean
m0 and a specified density-independent deviation. In
practice, estimates of m0 and its variance can be ob-
tained from a time series of population size (see Dennis
et al. 1991, McCallum 2000).

To simulate populations exposed to disease, we ad-
justed Nt at each time step to mimic the effects of an
epidemic of a virulent pathogen in which all hosts were
initially susceptible and in which the disease was fatal.
There were two sequential aspects to each epidemic,
both of which were density dependent. The first was
the probability of an epidemic occurring. This was the
probability a of an infected individual entering a pop-
ulation times the probability b that this infected indi-
vidual would cause an epidemic. In the model results
reported here, we assumed that a 5 1. Epidemiological
theory shows that a pathogen will not invade a host
population if R0 , 1, but is not inevitable even if R0

. 1 (Anderson and May 1986). Using a result obtained
by Dietz (1993), we assumed that b, the probability of
an epidemic occurring, given that R0 . 1, was

1
b 5 1 2 . (2)

R0

We further made the conventional assumption that
transmission was density dependent (see McCallum et
al. 2001). When transmission is density dependent, R0

5 Nb/(g 1 a), where b is the transmission rate of the
disease, g is the recovery rate, and a is the instanta-
neous death rate of infected hosts. Because our model
concerns a fatal disease with no recovery, we can sim-
plify such that R0 5 Nb/a. To calculate the impact of
the disease if the disease were to invade the host pop-
ulation, we estimated the uninfected fraction ( f ) of the

initially susceptible hosts remaining after an epidemic
as f 5 exp(2R0). This estimate is only accurate if R0

. 3 (Swinton 1998). At lower values of R0, f 5
exp(2R0 (1 2 f )), which does not have a closed-form
solution. We found solutions for f numerically, and
solved for the numerical relationship between f and R0,
which resulted in the approximate relationship f 5
exp(1.24 2 1.39R0) when R0 , 3. This approximation
allows estimation of f to within 0.05, unless R0 is less
than 1.15, when it underestimates f. Using these esti-
mates for f, we modified Eq. 1 to include the effect of
a virulent pathogen as Nt11 5 fNtexp(mt). Thus, disease
dynamics follow the form in Eq. 1 when R0 , 1. With
R0 . 1, and given that an epidemic occurs with prob-
ability b (see Eq. 2), we then express the effects of
disease on host density as

N 5 N exp(1.24 2 1.39R )exp(m ) for 1 , R , 3t11 t 0 t 0

(3)

N 5 N exp(2R )exp(m ) for R . 3. (4)t11 t 0 t 0

The dynamics in Eq. 3 can be represented in the form
of one of the more traditional expressions of self-lim-
itation, the Ricker model:

NtN 5 N exp r 1 2 (5)t11 t 1 2[ ]K

where the carrying capacity, K, and the density-inde-
pendent growth rate, r, are described in terms of disease
parameters as

(1.24 1 m)
K 5 (6)

R0

r 5 m 1 1.24. (7)t

Ignoring stochasticity (mt 5 m), and assuming a low
growth rate, the dynamics of disease and simple density
dependence are identical (Fig. 1). The key distinction
between a density-dependent model following the form
in Eq. 5 and host dynamics subject to a density-de-
pendent epidemic (Eqs. 1–4) is that in the latter, the
onset of density dependence is probabilistic, and both
this probability and the effects of the epidemic are de-
termined by the host density (see Eq. 2). In simple
density-dependent population growth, dynamics follow
Eq. 5 in every time step. This is not true for a disease
model. Thus, our goals were to quantify differences
between the processes of disease and simple density
dependence and then to evaluate how differences in the
processes may corrupt risk estimates from density-in-
dependent PVA models in qualitatively different ways.

To accomplish these goals, we first simulated time
series for populations exposed to disease or experi-
encing density dependence in which the parameters
used (i.e., values for m0 and s2) were identical for both.
We ran Monte Carlo simulations (40 years, 1000 it-
erations each) for four scenarios for each type of pop-
ulation process: (1) steady but variable populations
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FIG. 2. Disease and Ricker dynamics with
low environmental stochasticity for four con-
servation case studies. Median (solid) and upper
and lower quartile (dotted) log-transformed
abundance levels are shown for populations ex-
posed to disease (left-hand panels) or driven by
a Ricker process (right-hand panels). Here we
show four case studies relevant to conservation
(top to bottom): (a, b) steady but variable pop-
ulations (N0 5 K, m0 5 0); (c, d) slowly recov-
ering populations (N0 5 0.1K, m0 5 0.05); (e,
f) slowly declining populations (N0 5 K, m0 5
20.05); and (g, h) rapidly recovering popula-
tions (N0 5 0.1K, m0 5 0.3). Probabilities of
quasi-extinction (probability of an 80% decline
in 40 years, P80) are given in the upper left cor-
ner of each panel. All other parameters were as
follows: a 5 0.2, b 5 0.0001, and s2 (variance
in mt) 5 0.05, roughly the median of 22 em-
pirical estimates of this parameter (Sabo et al.
2004).

hovering near their carrying capacity; (2) slowly de-
clining populations; (3) slowly recovering populations;
and (4) rapidly recovering populations. These situa-
tions correspond to case studies in which linear PVA
models perform well (cases 1–3) or poorly (case 4)
despite density dependence (Sabo et al. 2004). This
was repeated for populations experiencing low and
moderate levels of stochasticity (s2 5 0.05 or 0.134,
respectively). The Ricker model generates damped os-
cillations, cycles, and chaos at successively higher val-
ues for m (Figs. 2–6). We investigated the effects of
these sources of deterministic variation on population
persistence in a second series of Monte Carlo simu-
lations. Finally, we examined the effects of disease and
density dependence on the efficacy of density-inde-
pendent PVA models by comparing observed risk (P80)
estimated empirically across 1000 replicate 40-year
time series and a risk estimate from a linear PVA. Es-
timated P80 values were calculated in two steps. First,
we estimated the parameters m and s2 from each (1000)
time series following (Dennis et al. 1991) and extracted
the median value for each. Second, we used these me-
dian values to project 1000 replicate populations ac-
cording to an exponential process (Eq. 1) and calcu-
lated the P80 numerically from these time series. This
was done for disease and density dependence, and using
a wide range of values for the parameters a/b and m
to generate the original disease- and density-dependent
time series.

MODEL RESULTS

Dynamics of disease and simple density-dependent
processes for endangered populations

Over a wide range of parameter values, disease dy-
namics differed significantly from those generated by

a Ricker process. When growth rates were low (Figs.
2–3), median realizations were often similar for disease
and Ricker processes. Despite this qualitative similar-
ity, however, variability in abundance (e.g., 25th and
75th percentile abundance levels for a given year) and
associated probabilities of decline to the quasi-extinc-
tion threshold (P80) were typically higher for popula-
tions experiencing disease than simple self-limitation.
Probabilities of quasi-extinction were higher for dis-
ease under a regime of low environmental stochasticity
when populations were near their carrying capacity
(Fig. 2 a, b) or recovering rapidly toward this threshold
abundance level (Fig. 2 g, h). Observed values for P80

were 2.35 times higher for populations exposed to dis-
ease than those experiencing self-limitation when in-
trinsic growth rates were negligible (m0 5 0) but var-
iable (s2 5 0.05). Moreover, P80 increased with m0 for
population exposed to disease, but decreased with m0

for populations experiencing self-limitation (compare
Fig. 2c, d and g, h). By contrast, variability and prob-
abilities of quasi-extinction were more similar between
disease and Ricker processes when populations in-
creased slowly toward K (Figs. 2c, d and 3c, d) or had
negative intrinsic growth rates (Figs. 2e, f and 3e, f).
Finally, disease dynamics diverged even further from
self-limitation under a regime of higher levels of en-
vironmental stochasticity (s2 5 0.134; compare panels
in Figs. 2 and 3).

Population dynamics were most different between
models driven by disease and Ricker processes when
populations experienced higher intrinsic growth rates
(m0 5 0.51, 1.01, 1.51, and 2.01). Median and upper
and lower quartile realizations were highly variable for
populations experiencing disease, but extremely con-
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FIG. 3. Disease and Ricker dynamics with
moderate levels of environmental stochasticity
for four conservation case studies. Median (sol-
id) and upper and lower quartile (dotted) abun-
dance levels are shown for populations exposed
to disease (left-hand panels) or driven by a
Ricker process (right-hand panels). Here we
show four case studies relevant to conservation:
(a, b) steady but variable populations (N0 5 K,
m0 5 0); (c, d) slowly recovering populations
(N0 5 0.1K, m0 5 0.05); (e, f) slowly declining
populations (N0 5 K, m0 5 20.05); and (g, h)
rapidly recovering populations (N0 5 0.1K, m0

5 0.3). Probabilities of quasi-extinction (prob-
ability of an 80% decline in 40 years, P80) are
given in the upper left corner of each panel. All
other parameters were as follows: a 5 0.2, b
5 0.0001, and s2 (variance in mt) 5 0.134,
roughly the mean of 22 empirical estimates of
this parameter (Sabo et al. 2004).

FIG. 4. Disease and Ricker dynamics with
low environmental stochasticity when threat-
ened populations have high intrinsic growth
rates. Median (solid) and upper and lower quar-
tile (dotted) abundance levels are shown for
populations exposed to disease (left-hand pan-
els) or driven by a Ricker process (right-hand
panels). Here we show results for four levels of
the intrinsic growth rate: (a, b) m0 5 0.51; (c,
d) m0 5 1.01; (e, f), m0 5 1.51; and (g, h) m0 5
2.01. Probabilities of quasi-extinction (proba-
bility of an 80% decline in 40 years, P80) are
given in the upper left corner of each panel. All
other parameters were as follows: a 5 0.2, b
5 0.0001, N0 5 K, and s2 (variance in mt) 5
0.05, roughly the median of 22 empirical esti-
mates of this parameter (Sabo et al. 2004).

sistent for populations growing according to a simple
Ricker process (Fig. 4). Similarly, observed values of
P80 were consistently much higher for populations ex-
posed to disease than self-limitation for both low and
moderate levels of environmental stochasticity (Figs.
4 and 5, respectively). In fact, populations experiencing
density dependence as a Ricker process and growing
rapidly declined to our a priori risk level of 20% N0

only when growth rates were extremely high (m0 . 2)
and environmental stochasticity was high (s2 5 0.134).
These results illustrate the additional stochasticity in-

troduced by the disease process (via b, the probability
of the epidemic occurring once it arrives to a popu-
lation). Although this stochasticity causes little devi-
ation in the median trend of population trajectories,
variance about this trend is changed significantly by
the form of the disease model used in our analysis (Eqs.
1–3).

In contrast to disease dynamics, when populations
always grow according to a Ricker process (as in self-
limitation) and growth rates are high, the process great-
ly diminishes the effect of environmental stochasticity
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FIG. 5. Disease and Ricker dynamics with
moderate levels of environmental stochasticity
when threatened populations have high intrinsic
growth rates. Median (solid) and upper and low-
er quartile (dotted) abundance levels are shown
for populations exposed to disease (left-hand
panels) or driven by a Ricker process (right-
hand panels). Here we show results for four
levels of the intrinsic growth rate: (a, b) m0 5
0.51; (c, d) m0 5 1.01; (e, f), m0 5 1.51; and
(g, h) m0 5 2.01. Probabilities of quasi-extinc-
tion (probability of an 80% decline in 40 years,
P80) are given in the upper left corner of each
panel. All other parameters were as follows: a
5 0.2, b 5 0.0001, N0 5 K, and s2 (variance
in mt) 5 0.134, roughly the mean of 22 empirical
estimates of this parameter (Sabo et al. 2004).

(e.g., in mt). In a pure Ricker processes, strong signals
(e.g., high growth rates) greatly overshadow noise (low
background variation in the mean growth rate). In sum-
mary, disease dynamics become increasingly stochastic
and Ricker dynamics increasingly deterministic for
high values of intrinsic population growth. In a disease
process, density dependence does not consistently oc-
cur for populations that overshoot the threshold abun-
dance level captured in R0. Thus, populations exposed
to disease can overshoot this threshold during several
consecutive years, leading to even stronger overcom-
pensation when the disease finally occurs. Time-de-
layed density dependence appears to strongly enhance
the probability of extinction in populations exposed to
disease.

Effects of disease and self-limitation
on extinction risk estimates

Observed probabilities of quasi-extinction (P80) were
similar for populations with negative intrinsic growth
rates (m0), but much different for almost all nonnegative
values of this parameter (Fig. 6). Observed P80 values
were higher for populations exposed to disease for
nearly all positive values of m0, irrespective of the
threshold for density dependence (b/a). Differences in
observed P80 values between disease and Ricker pro-
cesses exceeded 0.8 when growth rates were high. Pre-
dicted P80 values were frequently lower than observed
values (i.e., underestimated) for disease, and were high-
er than observed values (i.e., overestimated) for a Rick-
er process. For example, for populations exposed to
disease, predicted values for moderate growth rates (m0

5 0.1–0.3) are underestimated by as much as 20% (Fig.
7). At the same growth rate, populations experiencing

self-limitation experience essentially no risk of quasi-
extinction (P80 5 0), whereas predicted levels are some-
what higher (0–0.2). P80 is only rarely underestimated
for populations growing according to a Ricker process
(e.g., at very high growth rates where limit cycles pre-
vail). In practice, these results suggest that risk esti-
mates more often will be overly optimistic for modestly
recovering populations exposed to disease than for sim-
ilar populations limited by a more traditional density-
dependent process. Errors are much smaller, and in
many cases conservative, for more rapidly growing
populations infected by disease (Fig. 7). Thus, error in
estimating the probability of large declines in abun-
dance is similar for populations exposed to disease and
more traditional forms of density dependence when in-
trinsic growth rates are high.

DISCUSSION

Prospects for including disease in PVA

Our results suggest three practical consequences of
incorporating disease dynamics into population viabil-
ity analysis. First, in addition to reducing population
growth rates, disease can increase the variance in pop-
ulation abundance over time. This is an important ob-
servation because increased variance in abundance is
negatively correlated with persistence time (Dennis et
al. 1991, Morris et al. 1999), and increased nonrandom
variation in population dynamics may influence the
success of density-independent PVAs at estimating
risk. Second, patterns of quasi-extinction (e.g., P80) are
qualitatively different for disease dynamics than for
more traditional forms of density-dependent self-lim-
itation. Disease typically increases the observed prob-
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FIG. 6. Effect of the intrinsic growth rate (m0) and the ‘‘density threshold,’’ b/a, which controls the density at which
density-dependent effects occur in disease and Ricker processes, on observed probabilities of 80% declines (left-hand panels)
and estimated values for the same declines from PVA (right-hand panels). Results are shown for time series generated by a
disease model (top row) and a Ricker model (bottom row). Contours are probabilities of decline (P80). All other parameters
were as follows: N0 5 K and s2 (variance in mt) 5 0.05, roughly the median of 22 empirical estimates of this parameter
(Sabo et al. 2004).

ability of quasi-extinction more strongly than does sim-
ple density dependence, especially when intrinsic pop-
ulation growth rates (m0) are high. This suggests that
the strongly overcompensatory characteristics of our
disease model may alter viability in a way character-
istically different from that of more traditional forms
of density dependence. Finally, DA estimates of quasi-
extinction from a time series of a population with a
history of epidemic disease are more likely to be overly
optimistic than those from populations affected by
Ricker type density dependence. For populations with
moderately high intrinsic growth rates (m0 5 0.1–0.3),
DA methods almost always underestimate risk for in-
fected populations. As a consequence, populations with
seemingly rosy prospects for recovery are both more
susceptible to disease than declining populations and,
at the same time, most likely to produce overly opti-
mistic estimates of risk using density-independent PVA
models.

Disease has only recently been incorporated into
user-friendly PVA packages. For example, a beta ver-
sion of a program called ‘‘OUTBREAK’’ that aims to
investigate disease impacts has recently appeared on
the VORTEX web site. Although the details of disease
are not transparent in this program, it is one of the first
to offer disease as an explicit factor in viability anal-

ysis. Few of the other common packages for PVA mod-
els (RAMAS, VORTEX, NEMESIS, ALEX; respective
sources are: Ferson et al. [1988], Lacy et al. [1995],
Gilpin [1993], Possingham et al. [1992]) permit mov-
ing beyond treating epidemic disease as ‘‘catastrophic
stochasticity,’’ because none explicitly includes param-
eter fields for disease. In principle, standard epidemi-
ological models (Anderson and May 1991) could be
added to the framework of PVA models such as VOR-
TEX. However, these epidemiological models are
based on differential equations, whereas the usual PVA
models are structured as difference equations, usually
with a time step of one year. The difference in the
characteristic time scale at which parasites and path-
ogen populations change compared to that on which
host populations change means that simply combining
the two classes of model will not be successful. One
solution is to develop a much more elaborate individ-
ual-based model along the lines used by Haydon et al.
(2002). However, fully parameterizing any host–para-
site model is likely to be particularly difficult for a
pathogen affecting an endangered species. A possible
solution to these problems is to use the difference in
the time scale of the two systems to make some ap-
proximations that may enable the system to be handled
without a full-scale epidemic model of the Anderson
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FIG. 7. Raw error in predicted probabilities of an 80% decline (P80) for populations exposed to disease (top) or experiencing
self-limitation via a pure Ricker process (bottom). Raw error is defined as the difference between predicted and observed
P80 such that overly optimistic error has negative values and conservative error has positive values.

and May format. Our model, which assumes that epi-
demics run to completion within a single time step, is
an example of such an approach. More appropriately,
stochastic single-population models should explicitly
incorporate uncertainty in processes that may occur
when populations become small or large (e.g., Ginz-
burg et al. 1990, Mangel and Tier 1994), such as Allee
effects or increased disease transmission.

Embracing the complexity of disease
in the context of PVA

Although our analysis helps to elucidate the ques-
tions identified as essential in any PVA for which dis-
ease dynamics are relevant, the disease transmission
model that we employed is admittedly a simplified,
first-cut approach at incorporating disease, which is
often more complicated in the real world. Returning to
the four questions that disease poses for the application
of PVA to real populations (see Relevant principles of
epidemiology), our results shed light on two of these
issues (2 and 3). Specifically, our results suggest that
disease introduces biases that are qualitatively different

from those of simple density dependence, as a result
of the probabilistic nature of disease occurring (i.e.,
Eq. 2). Thus, when applying PVA to real populations
experiencing disease, the likelihood that an epidemic
will become established in the population once it has
arrived (question 2) is more important than the strength
of the impact of the pathogen on the host population
once it has become established (question 3). In other
words, the additional stochastic element of disease (Eq.
2) produces population realizations that are inherently
more likely to yield overly optimistic forecasts than
accurate or conservative ones. This result is in contrast
to most of the parameter space explored by Sabo et al.
(2004) for three types of simple density dependence.
However, more empirical and theoretical work should
be conducted to address issues (1) and (4) raised above
in Relevant principles of epidemiology.

In practice, there will be several quantities that need
to be estimated to determine the effect of an epidemic
on the persistence of a small population. It is important
to note that our model assumes that epidemics occur
in one time step. Although this may be appropriate for
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some situations (e.g., seal morbillivirus, plague in prar-
ie dogs, canine distemper in black footed ferrets;
McCallum and Dobson 1995), it will be necessary to
incorporate more long-term effects for chronic diseases
(for example, Chlamydia in koalas [Augustine 1998]
or nematodes in grouse [Hudson et al. 1992]). Second,
our model also assumes that all infected individuals
die, rather than recover. In nature, a fraction of infected
individuals survive following infection from most
pathogens, although mortality rates may be very close
to 100% when a naı̈ve host population is exposed to a
novel pathogen. For example, Australian rabbits ex-
perienced .99% mortality when first exposed to the
myxoma virus (Fenner and Ratcliffe 1965), Hawaiian
birds experienced 100% mortality when exposed to avi-
an pox (Warner 1968), and some amphibian species
experienced 100% mortality when exposed to the chy-
trid fungus (Daszak et al. 1999). Thus, the results from
our simple model represent a worst-case scenario with
regard to risk of extinction. Finally, although our ap-
proach captures the stochastic nature of the probability
of an epidemic occurring when the population is above
the threshold, there is likely to be further stochasticity,
depending on variation in the number of infected in-
dividuals migrating into the population. This would
lead to a further divergence between populations sub-
ject to disease and self-limiting populations. Incorpo-
rating these more realistic, often complex, dynamics is
an important next step in understanding the role of
disease in population viability.

How are the effects of disease on extinction risk
likely to vary with host properties?

In the situation in which the pathogen is the dominant
regulatory factor in a population, it is likely that pop-
ulations of species with high birth and death rates will
be relatively more vulnerable to extinction than species
with slow demographic rates. This effect occurs pri-
marily because species with rapid population growth
rates can achieve much higher population densities in
years when a disease outbreak fails to occur. This in-
creases both the probability and magnitude of a sub-
sequent epidemic. In contrast, larger bodied species
with slow demographic rates will tend to experience
frequent low-level disease outbreaks when close to the
threshold at which the pathogen can establish; these
will only reduce the host population by relatively small
increments. These predictions are supported by limited
field data on epidemics. Species that have experienced
local extinction in disease outbreaks have been rela-
tively small species with small body sizes, for example
black-footed ferrets (Thorne and Williams 1988) and
prairie dogs (Lechleitner et al. 1968). Where outbreaks
have occurred in larger bodied species with slower dy-
namics, the epidemic has been followed by recovery
(e.g., lions [Roelke-Parker et al. 1996]; gray seals [Har-
wood and Hall 1990, Heide-Jorgensen and Hankonen
1992]; wildebeest and buffalo [Sinclair et al. 2000]).

The future of disease in PVA

Conservation biologists have embraced PVA as a
tool for comparing the relative risk associated with
various management options. We have shown that PVA
also holds promise in evaluating the efficacy of alter-
native treatment options for minimizing the effects of
infectious disease on imperiled populations. To ex-
plicitly assess the role of disease in analyses of ex-
tinction risk for particular species of conservation con-
cern, information on host density dependence, patho-
gen R0, and probability of pathogen arrival will need
to be included in conventional PVA models. Inclusion
of disease dynamics should be considered in analyses
of extinction risk when pathogens or parasites are a
likely source of variability in either mortality or fe-
cundity. This is especially true for recovering species,
because most epidemics are density dependent, as is
the intensity of infection for endemic diseases. As
emerging infectious disease becomes increasingly rec-
ognized among conservation biologists as a threat to
biodiversity, the need for tools to consider this threat
will follow. Future management actions for endangered
species may involve manipulating pathogens to reduce
the threat of extinction of these species. For such sit-
uations, a PVA that incorporates disease explicitly will
be essential to forecast how much manipulation is nec-
essary to increase population persistence.
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